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Nadhir Hassen 3 4 Marin Biloš 1 △Sahil Garg 1 △Anderson Schneider 1 △Nicolas Chapados 2 4

△Alexandre Drouin 2 4 △Valentina Zantedeschi 2 ♣Yuriy Nevmyvaka 1 ♣Irina Rish 3 4

Abstract

Over the past years, foundation models have
caused a paradigm shift in machine learning due
to their unprecedented capabilities for zero-shot
and few-shot generalization. However, despite
the success of foundation models in modalities
such as natural language processing and computer
vision, the development of foundation models for
time series forecasting has lagged behind. We
present Lag-Llama, a general-purpose founda-
tion model for univariate probabilistic time se-
ries forecasting based on a decoder-only trans-
former architecture that uses lags as covariates.
Lag-Llama is pretrained on a large corpus of di-
verse time series data from several domains, and
demonstrates strong zero-shot generalization ca-
pabilities compared to a wide range of forecast-
ing models on downstream datasets across do-
mains. Moreover, when fine-tuned on relatively
small fractions of such previously unseen datasets,
Lag-Llama achieves state-of-the-art performance,
outperforming prior deep learning approaches,
emerging as the best general-purpose model on
average. Lag-Llama serves as a strong contender
to the current state-of-art in time series forecast-
ing and paves the way for future advancements in
foundation models tailored to time series data.

*Co-first authorship, authors contributed equally, order arbi-
trary. ♢♠△♣ Authors in each group contributed equally, order
arbitrary. 1Morgan Stanley, New York, USA 2ServiceNow Re-
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1. Introduction
Probabilistic time series forecasting is an important practi-
cal problem arising in a wide range of applications, from
finance and weather forecasting to brain imaging and com-
puter systems performance management (Peterson, 2017).
Accurate probabilistic forecasting is usually an essential
step towards the subsequent decision-making in such prac-
tical domains. The probabilistic nature of such forecasting
endows decision-makers with a notion of uncertainty, allow-
ing them to consider a variety of future scenarios, along with
their respective likelihoods. Various methods have been pro-
posed for this task, ranging from classical autoregressive
models (Hyndman & Athanasopoulos, 2021) to the more
recent neural forecasting methods based on deep learning
architectures (Torres et al., 2021). Note that the overwhelm-
ing majority of these previous approaches are focused on
building dataset-specific models, i.e. models tested on the
same dataset in which training is performed.

Recently, however, machine learning is witnessing a
paradigm shift due to the rise of foundation models (Bom-
masani et al., 2022) — large-scale, general-purpose neural
networks pretrained in an unsupervised manner on large
amounts of diverse data across various data distributions.
Such models demonstrate remarkable few-shot generaliza-
tion capabilities on a wide range of downstream datasets
(Brown et al., 2020a), often outperforming dataset-specific
models. Following the successes of foundation models in
language and image processing domains(OpenAI, 2023;
Radford et al., 2021), we aim to develop foundation models
for time series, investigate their behaviour at scale, and push
the limits of transfer achievable across diverse time series
domains.

In this paper, we present Lag-Llama— a foundation model
for probabilistic time series forecasting trained on a large
collection of open time series data, and evaluated on un-
seen time series datasets. We investigate the performance of
Lag-Llama across several settings where unseen time series
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datasets are encountered downstream with different levels of
data history being available, and show that Lag-Llama per-
forms comparably or better against state-of-the-art dataset-
specific models.

Our contributions:

• We present Lag-Llama, a foundation model for univariate
probabilistic time series forecasting based on a simple
decoder-only transformer architecture that uses lags as
covariates.

• We show that Lag-Llama, when pretrained from scratch
on a broad, diverse corpus of datasets, has strong zero-shot
performance on unseen datasets, and performs compara-
bly to models trained on the specific datasets.

• Lag-Llama also demonstrates state-of-the-art perfor-
mance across diverse datasets from different domains
after finetuning, and emerges as the best general-purpose
model without any knowledge of downstream datasets.

• We demonstrate the strong few-shot adaptation perfor-
mance of Lag-Llama on previously unseen datasets,
across varying fractions of data history being available.

• We investigate the diversity of the pretraining corpus
used to train Lag-Llama, and present the scaling laws
of Lag-Llama with respect to the pretraining data.

2. Related Work
Statistical models have been the cornerstone of time series
forecasting for decades, evolving continuously to address
complex forecasting challenges. Traditional models such as
ARIMA (Autoregressive Integrated Moving Average) set the
foundation by using autocorrelation to forecast future val-
ues. ETS (Error, Trend, Seasonality) models advanced this
by decomposing a time series into its fundamental compo-
nents, allowing for more nuanced forecasting that captures
trends and seasonal patterns. Theta models, introduced by
Assimakopoulos & Nikolopoulos (2000), represented an-
other significant advancement in time series forecasting. By
applying a decomposition technique combining both long-
term trend and seasonality, these models offer a simple yet
effective method for forecasting Despite the success of the
considerable successes of these statistical models and more
advanced ones (Croston, 1972; Syntetos & Boylan, 2005;
Hyndman & Athanasopoulos, 2018), these models share
common limitations. Their primary shortfall lies in their
inherent assumption of linear relationships and stationarity
in time series data, which is often not the case in real-world
scenarios marked by abrupt changes and non-linear dynam-
ics. Furthermore, they may require extensive manual tuning
and domain knowledge to select appropriate models and
parameters for specific forecasting tasks.

Neural forecasting is a rapidly developing research area
following the explosion of machine learning (Benidis et al.,

2022). Various architectures have been developed for this
setting, starting with RNN-based and LSTM-based models
(Salinas et al., 2020; Wen et al., 2018). More recently in
light of the recent success of transformers (Vaswani et al.,
2017) for sequence-to-sequence modelling for natural lan-
guage processing, many variations of transformers have
been proposed for time series forecasting. Different models
(Nie et al., 2023a; Wu et al., 2020a;b) process the input
time series in different ways to be digestible by a vanilla
transformer, then re-process the output of a transformer for
a point forecast or a probabilistic forecast. On the other
hand, various other works propose alternative strategies to
vanilla attention and build off the transformer architecture,
for better models tailored for time series (Lim et al., 2021;
Li et al., 2023; Ashok et al., 2023; Oreshkin et al., 2020a;
Zhou et al., 2021a; Wu et al., 2021; Woo et al., 2023; Liu
et al., 2022b; Zhou et al., 2022; Liu et al., 2022a; Ni et al.,
2023; Li et al., 2019; Gulati et al., 2020).

Foundation models are an emerging paradigm of self-
supervised (or) unsupervised learning on large datasets
(Bommasani et al., 2022). Many such models (Devlin et al.,
2019; OpenAI, 2023; Chowdhery et al., 2022; Radford et al.,
2021; Wang et al., 2022) have demonstrated adaptability
across modalities, extending beyond web data to scientific
domains such as protein design (Robert Verkuil, 2022). Scal-
ing the model, dataset size and data diversity have also been
shown to result in remarkable transfer capabilities and excel-
lent few-shot learning on novel datasets and tasks (Thrun &
Pratt, 1998; Brown et al., 2020b). Self-supervised learning
techniques have also been proposed for time series (Li et al.,
2023; Woo et al., 2022a; Yeh et al., 2023). Most related to
our work is Yeh et al. (2023) who train on a corpus of time
series datasets. The key difference is that they validate their
model only on the downstream classification tasks, and do
not validate on forecasting tasks. Works such as Time-LLM
(Jin et al., 2023), LLM4TS (Chang et al., 2023), GPT2(6)
(Zhou et al., 2023a), UniTime (Liu et al., 2023), and TEMPO
(Anonymous, 2024) freeze LLM encoder backbones while
simultaneously fine-tuning/adapting the input and distribu-
tion heads for forecasting. The main goal of our work is to
apply the foundation model approach to time series data and
to investigate the extent of the transfer achievable across a
wide range of time series domains.

3. Probabilistic Time Series Forecasting
We consider a dataset of D ≥ 1 univariate time series,
Dtrain = {xi

1:T i}Di=1 sampled at a specific discrete set
of time points t ∈ {1, . . . , T i} where T i represents the
length of the time series i. Given this dataset, we aim to
train a predictive model that can accurately predict the val-
ues at the future P ≥ 1 time points; we refer to these
timesteps of our D time series as to the test dataset, denoted
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Dtest = {xi
T i+1:T i+P }

D
i=1.

The univariate probabilistic time series forecasting problem
involves modelling an unknown joint distribution of the
P future values of a one-dimensional sequence given its
observed past until timestep t from which prediction should
be performed, and covariates:

pϕ(x
i
t+1:t+P | xi

1:t, c
i
1:t+P ). (1)

where ϕ represents the parameters of a parametric distribu-
tion. In practice, rather than considering the whole history
of each time series i, which can vary considerably, we can
instead sub-sample fixed context windows of size C ≥ 1
of our choosing from the complete time series and learn an
approximation of the unknown distribution of the next P
future values given the covariates:

pϕ(x
i
C+1:C+P | xi

1:C , c
i
1:C+P ). (2)

When the distribution is modeled by a neural network with
parameters θ, predictions are then conditioned on these
(learned) parameters θ. We will approximate the distribution
in Eq. (2) by an autoregressive model, using the chain rule
of probability as follows:

pϕ(x
i
C+1:C+P | xi

1:C , c
i
1:C+P ; θ) =

C+P∏
t=C+1

pϕ(x
i
t | xi

1:t−1, c
i
1:t−1; θ).

4. Lag-Llama
We present Lag-Llama, a foundation model for univariate
probabilistic forecasting. The first step in building such a
foundation model for time series is training on a large corpus
of diverse time series. When training on heterogenous uni-
variate time series corpora, the frequency of the time series
in our corpus varies. Further, when adapting our founda-
tion model to downstream datasets, we may encounter new
frequencies and combinations of seen frequencies, which
our model should be capable of handling. We now present
a general method for tokenizing series from such a dataset,
without directly relying on the frequency of any specific
dataset, and thus potentially allowing unseen frequencies
and combinations of seen frequencies to be used at test time.

4.1. Tokenization: Lag Features

The tokenization scheme of Lag-Llama involves construct-
ing lagged features from the prior values of the time series,
constructed according to a specified set of appropriate lag in-
dices that include quarterly, monthly, weekly, daily, hourly,
and second-level frequencies. Given a sorted set of positive
lag indices L = {1, . . . , L}*, we define the lag operation

*Note that L refers to the list of lag indices, while L is the last
lag index in the sorted list L

time

...

sec(t)
min(t)

...
month(t)

lag indices:

Figure 1: For a time series, we depict the tokenization at the
timestep t of the value xt which contains lag features constructed
using an example set of lag indices L, where each value in the
vector is from the past of xt (in blue), and F possible temporal
covariates (date-time features) constructed from timestamp t (red).

on a particular time value as xt 7→ kt ∈ R|L| where each
entry j of kt is given by kt[j] = xt−L[j]. Thus to create
lag features for some context-length window x1:C we need
to sample a larger window with L more historical points
denoted by x−L:C

¶. In addition to these lagged features,
we add date-time features of all the frequencies in our cor-
pus, namely second-of-minute, hour-of-day, etc. up till
the quarter-of-year from the time index t. Note that while
the primary goal of these date-time features is to provide
additional information, for any time series, all except one
date-time feature will remain constant from one time-step
to the next, and from the model can implicitly make sense
of the frequency of the time series as well. Assuming we
employ a total of F date-time features, each of our tokens is
of size |L|+ F . Fig. 1 shows an example tokenization. We
note that a downside to using lagged features in tokenization
is that it requires an L-sized or larger context window.

4.2. Lag-Llama Architecture

Lag-Llama’s architecture is based on the decoder-only
transformer-based architecture LLaMA (Touvron et al.,
2023).

Fig. 2 shows a general schematic of this model with M de-
coder layers. A univariate sequence of length xi

−L:C along
with its covariates is tokenized by concatenating the covari-
ate vectors to a sequence of C tokens xi

1:C . These tokens
are passed through a shared linear projection layer that maps
the features to the hidden dimension of the attention module.
Similar to in Touvron et al. (2023), Lag-Llama incorporates
pre-normalization via the RMSNorm (Zhang & Sennrich,
2019) and Rotary Positional Encoding (RoPE) (Su et al.,
2021) at each attention layer’s query and key representations

¶This is since a history of L points in time is needed for all
points in the context, starting from the first point in the context
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as in LLaMA (Touvron et al., 2023).

After passing through the causally masked transformer lay-
ers, the model predicts the parameters ϕ of the forecast
distribution of the next timestep, where the parameters are
output by a parametric distribution head, as described in
Sec. 4.3. The negative log-likelihood of the predicted distri-
bution of all predicted timesteps is minimized.

At inference time, given a time series of size at least L, we
can construct a feature vector that is passed to the model
to obtain the distribution of the next time point. In this
fashion, via greedy autoregressive decoding, we can obtain
many simulated trajectories of the future up to our chosen
prediction horizon P ≥ 1. From these empirical samples,
we can calculate the uncertainty intervals for downstream
decision-making tasks and metrics with respect to held-out
data.

4.3. Choice of Distribution Head

The last layer of Lag-Llama is a distinct layer known as the
distribution head, which projects the model’s features to the
parameters of a probability distribution. We can combine
different distribution heads with the representational capac-
ity of the model to output the parameters ϕ of any parametric
probability distribution. For our experiments, we adopt a
Student’s t-distribution (Student, 1908) and output the three
parameters corresponding to this distribution, namely its
degrees of freedom, mean, and scale, with appropriate non-
linearities to ensure the appropriate parameters stay positive.
More expressive choices of distributions, such as normaliz-
ing flows (Rasul et al., 2021b) and copulas (Salinas et al.,
2019a; Drouin et al., 2022; Ashok et al., 2023) are potential
choices of distribution heads, however with the potential
overhead of difficulties in model training and optimization.
The goal of our work was to keep the model as simple as
possible, which led us to adopt a simple parametric distribu-
tional head. We leave the exploration of such distribution
heads for future work.

4.4. Value Scaling

When training on a large corpus of time series data from
different datasets and domains, each time series can be of
different numerical magnitude. Since we pretrain a founda-
tion model over such data, we utilize the scaling heuristic
(Salinas et al., 2019b) where for each univariate window, we
calculate its mean value µi =

∑C
t=1 x

i
t/C and variance σi.

We can then replace the time series xi
1:C in the window by

{(xi
t − µi)/σi}Ct=1. We also incorporate µi and σi as time

independent real-valued covariates for each token, to give
the model information of the statistics of the inputs, which
we call summary statistics.

During training and obtaining likelihood, the values are

log prob

Distribution
Head

lag-featured inputs

Positional
Encoding

Projection

Masked
Transformer

Decoder
Layer

Figure 2: The Lag-Llama architecture. Lag-Llama learns to out-
put a distribution over the values of the next time step based on
lagged input features. The input to the model is the token of a
univariate time series i at a given timestep, xi

t, constructed as
described in Sec.4.1. Here, we use cit to refer to all additional
covariates used along with the value at a timestep t, which include
the |L| lags, F date-time features, and summary statistics. The in-
puts are projected through M masked decoder layers. The features
are then passed through the distribution head and trained to predict
the parameters of the forecast distribution of the next timestep.

transformed using the mean and variance, while sampling,
every timestep of data that is sampled is de-standardized
using the same mean and variance. In practice, instead of
the standard scaler, we find the following standardization
strategy works well when pretraining our model.

Robust Standardization ensures that our time series pro-
cessing is robust to outliers. This procedures normalizes
the series by removing the median and scaling according to
the Interquartile Range (IQR) (Dekking et al., 2005). For
a context-window sized series x1:C = {x1, x2, ..., xC} we
standardize each time point as:

x′
t =

xt −Med(x1:C)

IQR(x1:C)
, where (3)

IQR(x1:C) = Med({x⌈C/2⌉:C})−Med({x1:⌊C/2⌋}).
(4)

4.5. Training Strategies

We employ a series of training strategies to effectively pre-
train Lag-Llama on the corpus of datasets. Firstly, we find
that employing a stratified sampling approach where the
datasets in the corpus are weighed by the amount of total
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number of series is useful when sampling random windows
from the pretraining corpus. Further, we find that employ-
ing time series augmentation techniques of Freq-Mix and
Freq-Mask (Chen et al., 2023) serve useful to reduce overfit-
ting. We search the hyperparameters of these augmentation
strategies as part of our hyperparameter search.

5. Experimental Setup
5.1. Datasets

We collate a diverse corpus of 27 time series datasets from
several sources across six different semantically grouped
domains such as energy, transportation, economics, na-
ture, air quality and cloud operations; each dataset has a
different set of characteristics, such as prediction lengths,
number of series, lengths of each series, and frequencies.

We leave out a few datasets from each domain for testing
the few-shot generalization abilities of the pretrained model,
whle using the remaining datasets for pretraining the founda-
tion model. Furthermore, we set aside datasets from entirely
different domains to assess our model’s performance on
data that may lack any potential similarity to the datasets in
pretraining. Such a setup mimics the real-world use of our
model, where one may adapt it for datasets that fall closely
within the distribution of domains that the model has been
trained on, as well as datasets in completely different do-
mains. Our pretraining corpus comprises a total of 7, 965
different univariate time series, each of different lengths,
when put together, comprising a total of around 352 million
data windows (tokens) for our model to train on. App. §A
lists the datasets we use, along with their sources and prop-
erties, their respective domains, and the dataset split used in
our experiments.

Note that the term “domain” used here is just a label used
to group several datasets, which does not represent a com-
mon source or data distribution; each of the pretraining and
test datasets possesses very different general characteristics
(patterns, seasonalities), apart from having other distinct
properties. We use the default prediction length of each
dataset for evaluation and ensure that there is a wide variety
of prediction horizons in our unseen corpus of datasets, to
evaluate models on short-term, medium-term, and long-term
forecasting setups. App. §A lists the different datasets used
in this work, along with the sources and properties of each
dataset. Sec. § 7.1 analyses the diversity of our corpus of
datasets.

5.2. Baselines

We compare the performance of Lag-Llama to that of a
large set of baselines, including both standard statistical
models, as well as deep neural networks.

Through AutoGluon (Shchur et al., 2023), an AutoML
framework for probabilistic time series forecasting, we
benchmark against 5 well-known statistical time series fore-
casting models: AutoARIMA (Hyndman & Khandakar,
2008) and AutoETS (Hyndman & Khandakar, 2008) which
are established statistical models that tune model parame-
ters locally for each time series (Hyndman & Khandakar,
2008), CrostonSBA (Syntetos and Boylan Approximate)
(Croston, 1972; Syntetos & Boylan, 2005) an intermittent
demand forecasting model using Croston’s model with the
Syntetos-Boylan bias correction approach, DynOptTheta
(The Dynamically Optimized Theta model) (Box & Jenk-
ins, 1976) a statistical forecasting method that is based on
the decomposition of the time series into trend, seasonality
and noise, and NPTS (Non-Parametric Time Series Fore-
caster) (Shchur et al., 2023), a local forecasting method that
assumes a non-parametric sampling distribution. We fur-
ther compare with 3 strong deep-learning methods through
the same AutoGluon framework: DeepAR (Salinas et al.,
2020), an autoregressive RNN-based method that has been
shown to be a strong contender for probabilistic forecasting
(Alexandrov et al., 2020), PatchTST (Nie et al., 2023b) a
univariate transformer-based method that uses patching to
tokenize time series, TFT (Temporal Fusion Transformer)
(Lim et al., 2021), an attention-based architecture with re-
current and feature-selection layers.

We benchmark against 4 more deep learning models: N-
BEATS (Oreshkin et al., 2020b), a neural network archi-
tecture that uses a recursive decomposition based on pro-
jecting residual signals on learned basis functions, Informer
(Zhou et al., 2021c), an efficient autoregressive transformer-
based method that uses a ProbSparse self-attention mecha-
nism to handle extremely long sequences, AutoFormer (Wu
et al., 2022), a transformer-based architecture with an Auto-
Correlation mechanism based on the series periodicity, and
ETSFormer (Woo et al., 2022b), a transformer that replaces
self-attention with exponential smoothing attention and fre-
quency attention. We finally benchmark against OneFitsAll
(Zhou et al., 2023b), a method that leverages a pretrained
large language model (LLM) (GPT-2 (Radford et al., 2019))
and finetunes the input and output layers for time series
forecasting.

Note that all the methods are compared in the univariate
setup, where, similar to Lag-Llama, each time series is
treated and forecasted independently. All methods pro-
duced using AutoGluon support probabilistic forecasts. All
the other models (N-BEATS, Informer, AutoFormer, ETS-
Former, and OneFitsAll) were originally designed for point
forecasting and clean normalized data; we adapt them for
probabilistic forecasting by using a distribution head at the
output and endowing them with all the features similar to
Lag-Llama such as value scaling.
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Table 1: CRPS of Lag-Llama zero-shot and on finetuning on the unseen datasets, compared to supervised baselines trained solely on the
respective datasets. Lower is better. A mean or standard deviation of 0.0000 signifies that the first non-zero digit is beyond 3 decimal
places. The best results are in bold, and the second best results are in brown.

MODEL
DATASET AVERAGE RANK

WEATHER PED-COUNTS ETT-M2 PLATFORM-DELAY REQUESTS BEIJING-PM2.5 EXCHANGE

SUPERVISED

ETSFORMER 0.528±0.175 0.275±0.024 0.140±0.002 0.171±0.025 0.218±0.070 0.266±0.099 0.029±0.014 13.000
NPTS 0.276±0.000 0.684±0.006 0.139±0.000 0.132±0.001 0.085±0.001 0.170±0.003 0.059±0.001 12.714
OFA 0.265±0.006 0.605±0.023 0.130±0.006 0.213±0.011 0.121±0.011 0.130±0.009 0.015±0.001 11.357
AUTOFORMER 0.240±0.021 0.247±0.011 0.088±0.014 0.152±0.030 0.301±0.178 0.151±0.002 0.037±0.025 11.000
CROSTONSBA 0.177±0.000 0.594±0.000 0.102±0.000 0.097±0.000 0.042±0.000 0.198±0.000 0.031±0.000 9.429
AUTOARIMA 0.213±0.000 0.755±0.000 NAN±NAN 0.112±0.000 0.076±0.000 0.110±0.000 0.009±0.000 8.333
AUTOETS 0.215±0.000 0.625±0.000 0.081±0.000 0.297±0.000 0.041±0.000 0.090±0.000 0.008±0.000 8.000
DYNOPTTHETA 0.217±0.000 1.817±0.000 0.049±0.000 0.118±0.000 0.055±0.000 0.108±0.000 0.008±0.000 7.857
INFORMER 0.172±0.011 0.223±0.005 0.070±0.003 0.106±0.009 0.104±0.012 0.057±0.003 0.017±0.004 6.429
DEEPAR 0.148±0.004 0.239±0.002 0.068±0.003 0.068±0.003 0.045±0.009 0.154±0.000 0.012±0.000 5.714
PATCHTST 0.178±0.013 0.254±0.001 0.035±0.000 0.094±0.001 0.024±0.003 0.145±0.001 0.011±0.000 5.643
N-BEATS 0.134±0.003 0.267±0.018 0.031±0.005 0.112±0.007 0.021±0.005 0.081±0.004 0.024±0.004 5.071
TFT 0.151±0.016 0.268±0.009 0.030±0.000 0.099±0.001 0.015±0.003 0.156±0.000 0.008±0.000 5.000

ZERO-SHOT

LAG-LLAMA 0.164±0.001 0.285±0.033 0.063±0.002 0.091±0.002 0.090±0.015 0.130±0.009 0.011±0.001 6.714

FINETUNED

LAG-LLAMA 0.132±0.001 0.227±0.010 0.017±0.001 0.096±0.002 0.012±0.002 0.125±0.021 0.009±0.000 2.786

5.3. Hyperparameter Search and Model Training Setups

We perform a random search of 100 different hyperparam-
eter configurations and use the validation loss of the pre-
training corpus to select our model. We elaborate on our
hyperparameter search and model selection in Appendix
D. During pretraining, we use the batch size of 256 and a
learning rate of 10−4. Each epoch consists of 100 randomly
sampled windows, each of length L+C as described in Sec.
4.1. We use an early stopping criterion of 50 epochs based
on the average validation loss of the training datasets in our
pretraining corpus. When fine-tuning for a specific dataset,
we train our models with the same batch size and learning
rate, and each epoch consists of 100 randomly sampled win-
dows from the specific dataset, each of length L+ (C +P ),
where P now is the prediction length of the specific dataset.
Since our model is decoder-only, and since prediction length
is not fixed, the model can therefore work for any down-
stream prediction length. We use an early stopping criterion
of 50 epochs during fine-tuning, based on the validation
loss of the dataset being finetuned on. We elaborate on our
training procedure in Appendix B. For all the models trained
in this paper, we use a single Nvidia Tesla-P100 GPU with
12 GB of memory, 4 CPU cores, and 24 GB of RAM.

5.4. Inference and Model Evaluation

Inference for a specific dataset is performed by sampling
from the Lag-Llama model autoregressively, starting with
conditioning on the context of length C, until a prediction
length P , which is defined for a given dataset. We use the
Continuous Ranked Probability Score (CRPS) (Gneiting

& Raftery, 2007; Matheson & Winkler, 1976), a common
metric in the probabilistic forecasting literature (Rasul et al.,
2021b;a; Salinas et al., 2019a; Shchur et al., 2023), for
evaluating our model’s performance. We use 100 empirical
samples and report the CRPS averaged over the prediction
horizon and across all the time series of a dataset. We
further assess how well each method we benchmark on does
as a general-purpose forecasting algorithm, rather than a
dataset-specific one, by measuring the average rank of each
method, with respect to all others, over all the datasets.

6. Results
We first evaluate zero-shot performance of our pretrained
Lag-Llama on the unseen datasets (subsection 6.1), when
no samples from the new downstream domain are avail-
able for possible fine-tuning of the the model. Note that
such zero-shot forecasting scenarios are common in time
series forecasting literature (see, for example, the cold-start
problem (Wikipedia, 2024; Fatemi et al., 2023)). We then
fine-tune our pretrained Lag-Llama on each unseen dataset
and evaluate the model after fine-tuning, to study how our
pretrained model adapts to different unseen datasets and
domains when there is considerable history available in the
dataset to train on. We then evaluate the few-shot adapta-
tion performance of our foundation model — a well-known
scenario in other modalities (e.g., text) where foundation
models are expected to demonstrate strong generalization
capabilities. We vary the amount of history available for
fine-tuning on each dataset, and present the few-shot adap-
tation performance of our model at various levels of history
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Table 2: CRPS of Lag-Llama on few-shot adaptation on the unseen datasets with different amounts of data history being available,
compared to supervised baselines trained solely on the respective datasets. Lower is better. A mean or standard deviation of 0.0000
signifies that the first non-zero digit is beyond 3 decimal places. The best results are in bold.

DATA % MODEL
DATASET AVERAGE RANK

WEATHER PED-COUNTS EXCHANGE-RATE ETT-M2 PLATFORM-DELAY REQUESTS BEIJING-PM2.5

20 %

DEEPAR 0.156±0.004 0.241±0.002 0.033±0.000 0.089±0.000 0.094±0.002 0.065±0.000 0.176±0.006 3.429
PATCHTST 0.169±0.017 0.259±0.008 0.012±0.000 0.035±0.001 0.088±0.001 0.025±0.000 0.153±0.003 2.714

TFT 0.154±0.002 0.296±0.027 0.009±0.000 0.038±0.000 0.087±0.002 0.017±0.000 0.144±0.004 2.000
LAG-LLAMA 0.136±0.001 0.239±0.016 0.017±0.001 0.016±0.001 0.108±0.005 0.011±0.001 0.147±0.008 1.857

40 %

DEEPAR 0.159±0.022 0.237±0.022 0.011±0.002 0.053±0.000 0.100±0.000 0.030±0.003 0.158±0.000 3.071
PATCHTST 0.171±0.017 0.253±0.007 0.011±0.001 0.035±0.000 0.092±0.000 0.025±0.002 0.162±0.000 2.929

TFT 0.156±0.001 0.269±0.002 0.008±0.000 0.036±0.000 0.104±0.000 0.014±0.002 0.150±0.000 2.500
LAG-LLAMA 0.135±0.000 0.229±0.003 0.009±0.001 0.017±0.002 0.102±0.002 0.014±0.001 0.149±0.011 1.500

60 %

DEEPAR 0.158±0.023 0.234±0.009 0.011±0.001 0.049±0.006 0.114±0.006 0.026±0.002 0.157±0.004 3.071
PATCHTST 0.174±0.011 0.241±0.004 0.011±0.000 0.035±0.001 0.093±0.003 0.028±0.002 0.159±0.001 2.929

TFT 0.152±0.001 0.272±0.000 0.008±0.000 0.037±0.000 0.113±0.008 0.017±0.002 0.154±0.000 2.429
LAG-LLAMA 0.133±0.001 0.246±0.002 0.009±0.001 0.016±0.001 0.099±0.005 0.012±0.001 0.133±0.003 1.571

80 %

DEEPAR 0.145±0.005 0.243±0.015 0.016±0.003 0.071±0.020 0.113±0.002 0.131±0.000 0.156±0.001 3.429
PATCHTST 0.174±0.033 0.247±0.015 0.015±0.002 0.035±0.000 0.091±0.003 0.024±0.000 0.153±0.002 2.714

TFT 0.148±0.004 0.287±0.013 0.008±0.000 0.042±0.008 0.094±0.001 0.017±0.000 0.152±0.006 2.429
LAG-LLAMA 0.132±0.001 0.215±0.006 0.009±0.000 0.019±0.001 0.099±0.008 0.013±0.002 0.131±0.016 1.429

(section 6.2).

6.1. Zero-Shot & Finetuning Performance on New Data

Tab. 1 presents the results comparing the performance of
supervised baselines trained on specific datasets to the pre-
trained Lag-Llama zero-shot performance on the unseen
datasets, and to finetuned Lag-Llama on the respective un-
seen datasets. In the zero-shot setting, Lag-Llama achieves
comparable performance to all baselines, with an average
rank of 6.714. On fine-tuning, Lag-Llama achieves state-
of-the-art performance in 3 datasets, while performance in-
creases significantly in all other datasets. Most importantly,
on fine-tuning, Lag-Llama achieves the best average rank
of 2.786, with a significant difference of 2 points over the
best supervised model, which suggests that if one had to
choose a method to use without prior knowledge of the data,
Lag-Llama would be the best option. This clearly estab-
lishes Lag-Llama as a strong foundation model that can be
used on a wide range of downstream datasets, without prior
knowledge of these data distribution — a key property that
a foundation model should satisfy.

We now take a deeper dive into Lag-Llama’s performance
analysis. Evaluated zero-shot, Lag-Llama achieves strong
performance, notably in the platform-delay and weather
datasets, where it is especially close to baselines. With
fine-tuning, Lag-Llama consistently improves performance
compared to inferring zero-shot. In 3 datasets - namely,
ETT-M2, weather, and requests — finetuned version of
Lag-Llama achieves a significantly lower error than all the
baselines, becoming the state-of-the-art. On the exchange-
rate dataset coming from an entirely new domain, exhibit-
ing a new unseen frequency, Lag-Llama has comparable

zero-shot performance, and when finetuned achieves perfor-
mance similar to the state-of-the-art. This establishes that
Lag-Llama performs well across frequencies and domains
from which the model may or may not have seen similar data
on during pretraining. Lag-Llama achieves a better average
rank both in the zero-shot and finetuned setups compared
to the Informer, AutoFormer, and ETSFormer models, all
of which use complex inductive biases to model time series,
compared to Lag-Llama which uses a simple architecture,
lags and covariates, along with large-scale pretraining. Our
observations suggest that at scale, when used similarly to
Lag-Llama, vanilla decoder-only transformers outperform
other transformer architectures. We point out that similar
results have been shown in the NLP community (Tay et al.,
2022) studying the influence of inductive bias at scale, how-
ever, we emphasize that we are the first to point out such a
result for time series, potentially opening doors to further
studies in time series that analyse the influence of induc-
tive bias at scale. Next, compared to the OneFitsAll model
(Zhou et al., 2023b) which adapts a pretrained LLM for
forecasting, Lag-Llama achieves significantly better perfor-
mance in all datasets, except for the dataset beijing-pm2.5,
where it performs similarly to the baseline, while achiev-
ing a much better average rank than this model. These re-
sults demonstrate the potential of foundation models trained
from scratch on a large and diverse collection of time se-
ries datasets when compared to the adaptation of pretrained
LLMs, as in the OneFitsAll model (Zhou et al., 2023b). A
detailed investigation of the advantages and disadvantages
of adapting LLMs versus training time series foundation
models from scratch is left as a direction for future work.

We further visualize the forecasts produced by Lag-Llama
on the unseen datasets qualitatively in App. §E. Lag-Llama
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produces forecasts that closely match the ground truth. Fur-
ther, comparing the forecasts produced by the model in the
zero-shot (Fig. 8) and fine-tuned (Fig. 11) settings, one can
clearly see that the quality of forecasts increase significantly
when the model is fine-tuned.

6.2. Few-Shot Adaptation Performance on Unseen Data

We restrict the data to only the last K% of the history from
the training set of the datasets, where we set K to 20, 40, 60,
80 percentages respectively. We train the supervised meth-
ods from scratch on the available data, while we fine-tune
Lag-Llama. Results are presented in Tab. 2. Across varying
levels of history being available for adaptation, Lag-Llama
achieves the best average rank across all levels, which estab-
lishes Lag-Llama as one with strong adaptation capabilities
across all levels of data. As the amount of history available
increases, Lag-Llama achieves increasingly better perfor-
mance across all datasets, and the gap between the rank of
Lag-Llama and the baselines widens, as expected. Note,
however, that Lag-Llama is most often outperformed by
TFT in the exchange-rate dataset, which is from an entirely
new domain and has a new unseen frequency. Our observa-
tion demonstrates that, in cases where the data is most dis-
similar, as compared to the pretraining corpus, Lag-Llama
requires increasing amounts of history to train on, and, when
given enough history to adapt, performs comparable to state-
of-the-art (as discussed in subsection 6.1).

Overall, our empirical results demonstrate that Lag-Llama
has strong few-shot adaptation capabilities, and that,
based on the characteristics of the downstream dataset,
Lag-Llama can adapt and generalize with the appropriate
amount of data.

7. Analysis
7.1. Data Diversity

Although loss has been found to scale with pre-training
dataset size (Kaplan et al., 2020), it remains unclear what
other properties of pre-training datasets lead to desirable
model behaviour, despite some initial research in this di-
rection (Chan et al., 2022). Notably, diversity in the pre-
training data has contributed to improved zero-shot per-
formance and few-shot adaptation (Brown et al., 2020b),
notwithstanding the absence of an adequate definition.

To quantify the diversity of the pretraining corpus, we ana-
lyze the properties of its datasets through 22 Canonical time
series Characteristics (“catch22 features”), a set of quickly
computable time series features selected for their classifi-
cation ability (Lubba et al., 2019) from the features of the
Highly Comparable Time Series Analysis (hctsa) library
(Fulcher et al., 2013). To assess diversity across datasets,
we apply PCA to the features averaged per-dataset and plot

the top 2 components . We find that having multiple datasets
within domains and across domains increases the diversity
of AC22 features in the top 2-component space (see Figure
12 in Appendix).

7.2. Scaling Analysis

Dataset size has been shown empirically to improve per-
formance (Kaplan et al., 2020). Constructing neural scal-
ing laws (Kaplan et al., 2020; Caballero et al., 2023) can
help understand how the performance of the model scales
with respect to different parameters such as the amount of
pretraining data, number of parameters in the model etc.
Towards understanding these quantities for models such
as Lag-Llama, we fit neural scaling laws (Caballero et al.,
2023) to our model’s validation loss and present in App. §F.1
the obtained scaling laws that describe the performance of
our model with respect the amount of pretraining data.

8. Discussion
We present Lag-Llama, a foundation model for univari-
ate probabilistic time series forecasting based on a sim-
ple decoder-only transformer architecture. We show that
Lag-Llama, when pretrained from scratch on a large cor-
pus of datasets, has strong zero-shot generalization per-
formance on unseen datasets, and performs comparably
to dataset-specific models. Lag-Llama also demonstrates
state-of-the-art performance across diverse datasets from
different domains after finetuning, and emerges as the best
general-purpose model without any knowledge of down-
stream datasets. Lag-Llama also demonstrates a strong
few-shot adaptation performance across varying amounts
of data history being available. Finally, we investigate the
diversity of the pretraining corpus used to train Lag-Llama.

Our work opens up several potential directions for future
work. For now, collecting and collating a large scale time
series corpus of open dataset would be of high value, since
the largest time series dataset repositories (Godahewa et al.,
2021) are themselves too small. Further, scaling up the
models further beyond the model sizes explored in this work
using different training strategies constitutes an essential
next step towards building even more powerful time se-
ries foundation models. Finally, expanding our work from
univariate towards multivariate approaches by capturing
complex multivariate dynamics of real-world datasets also
constitutes an important direction for future work.

9. Impact Statement
The goal of this work is to introduce general-purpose foun-
dation models for time series forecasting. There are many
potential societal consequences of such models, including
positive impacts on optimizing processes via better decision-

8



Lag-Llama

making, as well as possible negative impacts.

To the best of our knowledge, none of the datasets used con-
tain nor are linked to any individual or personally identifi-
able data, and have been sourced from referenced locations.
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main parts of the paper.
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Andrew expanded the empirical design of the paper for the
fine-tuning and downstream adaptation settings, ran experi-
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the paper, wrote several key sections of the paper, adapted
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periments.

Arian ran experiments and contributed to the writing of
the first version of the paper, worked with the OneFitsAll

model initial code and experiments, and worked with the
experiments for the N-BEATS model.

Mohammad worked with all AutoGluon models and experi-
ments, added the option to use Stochastic Weight Averaging
(SWA), and brainstormed about early stopping techniques
to use when pretraining.

George ran experiments, and contributed to the writing of
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Corporation and Restaurant Datasets used in the experi-
ments of the project and the paper.

Roland worked with the code and experiments of the One-
FitsAll model for all large-scale experiments in the paper,
and contributed to writing several sections of the paper.
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for all large-scale experiments in the paper.
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A. Details of Datasets
We use the following datasets in our experiments, the statis-
tics of which are in Table 4, and their domains in Table
3. Table 3 further presents if a dataset was present in the
pretraining or downstream testing corpora in our work.

The Air Quality UC Irvine Repository dataset (UCI) con-
tains 9358 instances of hourly averaged responses from 5
metal oxide chemical sensors embedded in an Air Qual-
ity Chemical Multisensor Device in a polluted area (Vito,
2016).

The Australian Electricity Demand dataset comprises five
half-hourly time series of the electricity demand across five
Australian states: Victoria, New South Wales, Queensland,
Tasmania, and South Australia (Godahewa et al., 2021).

The Beijing PM2.5 dataset contains hourly data of PM2.5
levels recorded by the US Embassy in Beijing. The dataset
also includes meteorological data from Beijing Capital In-
ternational Airport (Chen, 2017).

The Beijing Multi-Site Air-Quality dataset comprises
hourly measurements of six primary air pollutants and six
corresponding meteorological variables at various locations
in Beijing over a period of four years. (Chen, 2019)

The Electricity Hourly dataset captures electricity usage
for 321 clients measured at hourly intervals from 2012 to
2014 (Godahewa et al., 2021).

The ETTh1, ETTh2, ETTm1, ETTm2 datasets contain
2 years worth of data obtained from two Electricity Trans-
formers at hourly and 15-minute frequencies curated to help
predict if electrical transformers’ oil is at a safe temperature
(Zhou et al., 2021b).

The Exchange Rate compilation encompasses the daily
exchange rates of eight foreign currencies, namely Australia,
the United Kingdom, Canada, Switzerland, China, Japan,
New Zealand, and Singapore, spanning the period from
1990 to 2016 (Godahewa et al., 2021).

The Huawei cloud datasets contain serverless traces (Joosen
et al., 2023). We select 8 series containing metrics based on
the minute-frequency occurrences of the top 10 functions
by median occurrences over 141 days: function delay, plat-
form delay, cpu usage, memory usage, cpu limit, memory
limit, instances. platform delay, requests.

The London Smart Meters dataset focuses on electrical
consumption readings from smart meters in 5,567 house-
holds that participated in the UK Power Networks Low Car-
bon London project between November 2011 and February
2014 (Godahewa et al., 2021).

The KDD Cup 2018 dataset comprises extensive hourly
time series data reflecting air quality levels across 59 stations

in Beijing and London from January 2017 to March 2018.
Measurements include PM2.5, PM10, NO2, CO, O3, and
SO2 (Godahewa et al., 2021).

The Pedestrian Counts dataset (referred to as ped-counts
in parts of the text) encompasses hourly pedestrian counts
recorded by 66 sensors within the city of Melbourne, com-
mencing in May 2009 (Godahewa et al., 2021).

The Solar dataset comprises 6000 simulated time series for
5-minute solar power and hourly forecasts of photovoltaic
power plants in the U.S. in 2006. It includes 137 time
series reflecting solar power production every 10 minutes in
Alabama during 2006 (Godahewa et al., 2021).

The Sunspot dataset comprises a singular extensive daily
time series of sunspot numbers spanning from January 1818
to May 2020 (Godahewa et al., 2021).

The Traffic dataset encompasses 862 hourly time series
depicting road occupancy rates on the freeways in the San
Francisco Bay area from 2015 to 2016 (Godahewa et al.,
2021).

The Uber TLC Hourly dataset consists data of 4.5 million
Uber pickups in NYC (April-September 2014) and 14.3 mil-
lion pickups (January-June 2015). It includes trip details for
10 other for-hire vehicle companies and aggregated data for
329 companies (FiveThirtyEight; Godahewa et al., 2021).

The Weather dataset includes time series of hourly climate
data near Monash University, Clayton, Victoria, Australia,
from January 2010 to May 2021. The data contains series
for temperature, dewpoint temperature, wind speed, mean
sea level pressure, relative humidity, surface solar radiation,
surface thermal radiation, and total cloud cover (Godahewa
et al., 2021).

The Wind Farms dataset contains minute-frequency time
series data tracking the wind power production of 339 wind
farms in Australia (Godahewa et al., 2021).

B. Protocol Details
For all datasets used in the paper, we have a training and test
split that are non-overlapping based on the timestamps, as
defined in the dataset. During pretraining, for each such
dataset, we exclude the 14 last overlapping windows of the
train split, and use it as the dataset’s validation set. When
pretraining, we train on a combined dataset formed out of
the train split of each dataset, after every epoch, we obtain
the validation loss on the validation sets of all datasets used
in the pretraining corpus. We use the average validation loss
for early stopping criterion (this is referred to as ”validation
loss” in the paper). When fine-tuning on a specific dataset,
we exclude the single last window of the train split, and use
it as the dataset’s validation set. We train on the train split
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Table 3: Datasets used in the pretraining corpus and the unseen datasets on which we evaluate, grouped by the domains they are labelled
against.

Transport & Tourism Energy Nature Air Quality Cloud Banking & Econ

Pretraining San Francisco Traffic Australian Electricity Demand KDD Cup 2018 Beijing Multisite CPU Limit Minute
Uber TLC Hourly Electricity Hourly Sunspot UCI CPU Usage Minute

London Smart Meters Function Delay Minute
Solar Instances Minute
Wind Farms Memory Limit Minute
ETT H1 Memory Usage Minute
ETT H2
ETT M1

Unseen Pedestrian Counts ETT M2 Weather Beijing PM2.5 Requests Minute Exchange Rate
Platform Delay Minute

Table 4: Statistics of all the datasets used in the paper. Frequencies H stands for Hourly, T for minute, and B for business day. Tokens refers
to the total number of windows of size 1 in the dataset, computed as the aggregate number of timesteps across all series in that dataset.

Dataset Freq Domain Prediction Length Train split

Timestamps # Series Tokens

Australian Electricity Demand 0.5H Energy 60 230676 5 1153380
Electricity Hourly H Energy 48 26256 321 8428176
London Smart Meters 0.5H Energy 60 23844 5560 132572640
Solar 10T Energy 60 52500 137 7192500
Wind Farms T Energy 60 526980 339 178646220
Pedestrian Counts H Transport 48 84283 66 5562678
Uber TLC Hourly H Transport 24 4254 262 1114548
Traffic H Transport 24 14036 862 12099032
KDD Cup 2018 H Nature 48 10850 270 2929500
Sunspot D Nature 30 73894 1 73894
Weather D Nature 30 695 3010 2091950
Exchange Rate 1B Economic 30 6071 8 48568
ETT H1 H Energy 24 8640 1 8640
ETT H2 H Energy 24 8640 1 8640
ETT M1 15T Energy 24 34560 1 34560
ETT M2 15T Energy 24 34560 1 34560
Requests Minute T Cloud 60 64800 10 648000
Function Delay Minute T Cloud 60 64800 10 648000
Platform Delay Minute T Cloud 60 64800 10 648000
CPU Usage Minute T Cloud 60 64800 10 648000
Memory Usage Minute T Cloud 60 64800 10 648000
CPU Limit Minute T Cloud 60 64800 10 648000
Memory Limit Minute T Cloud 60 64800 10 648000
Instances Minute T Cloud 60 64800 10 648000
UCI H Air Quality 24 9357 13 121641
Beijing PM2.5 H Air Quality 24 43824 8 350592
Beijing Multisite H Air Quality 24 35064 132 4628448
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Table 5: Hyperparameter choices for Lag-Llama. The values with * represent the optimal values obtained by hyperparameter search.
† Note that this is just the consecutive context that is sampled for each window; in practice we use a much larger context window due to
the use of lags, as described in Sec. § 4.1

HYPERPARAMETER LAG-LLAMA

NUMBER OF LAYERS 1,2,3,4,5,6,7,8*,9
NUMBER OF HEADS 1,2,3,4,5,6,7,8,9*
EMBEDDING DIMENSIONS PER HEAD 16*, 32, 64, 128, 256, 512
CONTEXT LENGTH C † 32*, 64, 128, 256, 512, 1024
AUGMENTATION PROBABILITY 0,0.25,0.5*,1.0
FREQUENCY MASKING RATE 0,0.25,0.5*,1.0
FREQUENCY MIXING RATE 0,0.25*,0.5,1.0
WEIGHT DECAY 0*,0.25,0.5,1.0
DROPOUT 0*,0.25,0.5,1.0

of the dataset, and use the validation split for early stopping.
We use the same setup as fine-tuning Lag-Llama, for all
supervised baselines that we produce results for in the paper.
Following typical evaluation setups (Shchur et al., 2023),
all results reported in the paper are on the last prediction
window of the test splits defined in App. §A.

C. Additional Empirical Results
C.1. Results on the Pretraining Datasets

A strong foundation model should not just be good at adapt-
ing zero-shot and few-shot to unseen distributions of data,
but should also perform well in-distribution, i.e. on the
datasets that the model has been pretrained on. Therefore,
apart from evaluating our model on unseen datasets, we also
evaluate our model on those datasets we use for pretraining.

Results are given in Tab. 6, Tab. 7, and Tab. 8. Results on Av-
erage Rank on all datasets are given in Tab. 9. The training
budget of Lag-Llama was split among all the pretraining
datasets, while other supervised models on the dataset do
not have that constraint. Thereby, Lag-Llama did not see as
much data in each dataset as the other models, and thereby
is not expected to perform as well as each supervised model
on the specific datasets. This is reflected in the results, as
Lag-Llama is not the best performing model in each dataset.
Still, Lag-Llama achieves a comparable average rank, and
is among the models achieving the top average ranks.

D. Hyperparameters of Lag-Llama
We perform a random search of 100 different hyperparame-
ter configurations and use the average validation loss over
all datasets in the pretraining corpus to select our model.

We list the possible hyperparameters of Lag-Llama and the
optimal values obtained by our hyperparameter search in
Tab. 5. Our final model obtained by hyperparameter search
contains 2,449,299 parameters.

E. Forecast Visualizations
We plot some sample forecasts and highlight the me-
dian, 50-th (dark green) and 90-th (light-green) predic-
tion interval; starting from datasets in the pretraining cor-
pus: Electricity Hourly in Figure 3, ETT-H2 in Fig-
ure 4, Traffic in Figure 5. The Zero-shot forecasts of
Lag-Llama on downstream unseen datasets are highlighted
for textttETT-M2 in Figure 6, Pedestrian Counts in Fig-
ure 7 and Requests Minute in Figure 8. Finally, forecasts
after fine-tuning on these downstream unseen datasets are
shown for ETT-M2 in Figure 9, Pedestrian Counts in
Figure 10 and Requests Minute in Figure 11. Note in
particular the different magnitudes of the sampled values
depending on the dataset, via the same shared model.

F. Additional Visualizations
F.1. Neural Scaling Laws

The parameters of the Neural Scaling Law (Caballero et al.,
2023) fit in Figure 13 to the validation loss (y) with respect
to the pretraining data epochs seen (x) (where each epoch is
100 randomly sampled windows) are given below.

y = a+
(
bx−c0

) n∏
i=1

(
1 +

(
x

di

)1/fi
)−ci∗fi

a = −6.1167

b = 8.01589

c0 = 0.0155

c1 = −0.1043

d1 = 1.6423e− 36

f1 = −36.4660

With such a law, one can extrapolate the validation loss of
the model and predict performance in larger dataset regimes
(Figure 13). As efforts progress towards collating better
data repositories for time series foundation model training,
such laws can help quantify the relations between the data
used and the performance of the model.
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Figure 3: Forecasting examples on the Electricity Hourly dataset

Figure 4: Forecasting examples from ETT-H2 dataset

Figure 5: Forecasting examples from Traffic dataset

Figure 6: Zero-shot forecasting examples on the unseen downstream ETT-M2 dataset
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Figure 7: Zero-shot forecasting examples on the unseen downstream Pedestrian Counts dataset

Figure 8: Zero-shot forecasting examples on the unseen downstream Requests Minute dataset

Figure 9: Lag-Llama fine-tuned forecasting examples on the downstream ETT-M2 dataset

Figure 10: Lag-Llama fine-tuned forecasting examples on the downstream Pedestrian Counts dataset
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Figure 11: Lag-Llama fine-tuned forecasting examples on the downstream Requests Minute dataset

Figure 12: Principal Component Analysis (PCA) on the average catch22 features of each pre-training dataset. We take the average of
the catch22 features for each dataset, standardize them, and then perform PCA on those points, such that each point corresponds to one
dataset. We then visualize these points projected onto the top 2 components, and we color the name of each dataset according to its
domain. The datasets are spread over both components, showing a diversity among the average catch-22 features of the different datasets.
Also, datasets from different domains tend to be clustered together, which demonstrates that combining different domains increases
pre-training data diversity. Together, these results suggest that combining multiple datasets across different domains increases the diversity
of the pre-training data. Under the assumption that diversity in the pre-training data is beneficial for foundation model pre-training (Brown
et al., 2020b), pre-training a single time series model on a diverse combination of multiple datasets from multiple domains is beneficial to
the foundation model’s zero-shot and few-shot adaptation performance.
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Table 6: CRPS of Lag-Llama on 7/20 datasets in the pretraining corpus, compared to supervised baselines trained solely on the respective
datasets. Lower is better. A mean or standard deviation of 0.0000 signifies that the first non-zero digit is beyond 3 decimal places.

MODEL
DATASET

AUS-ELEC-DEMAND ELECTRICITY KDD-CUP LONDON-SMART-METERS SOLAR SUNSPOT TRAFFIC

AUTOARIMA 0.065±0.000 0.098±0.003 0.552±0.000 NAN±NAN 0.558±0.000 77.862±0.000 0.277±0.000
AUTOETS 0.160±0.000 0.104±0.000 2.350±0.000 NAN±NAN 0.551±0.000 171.363±0.000 0.492±0.000
CROSTONSBA 0.127±0.000 0.244±0.000 0.459±0.000 0.500±0.000 1.016±0.000 34.458±0.000 0.414±0.000
DEEPAR 0.043±0.000 0.085±0.005 0.327±0.014 0.409±0.000 0.446±0.002 1.390±0.000 0.100±0.000
DYNAMICOPTIMIZE 0.043±0.000 0.203±0.000 0.550±0.000 0.681±0.000 1.580±0.000 181.350±0.000 0.383±0.000
NPTS 0.098±0.000 0.139±0.001 0.346±0.001 0.464±0.000 0.404±0.001 201.558±10.653 0.191±0.000
PATCHTST 0.056±0.000 0.088±0.001 0.432±0.043 0.375±0.000 0.734±0.002 3.083±0.000 0.153±0.001
TEMPORALFUSIONT 0.041±0.000 0.100±0.008 0.411±0.023 0.343±0.000 0.443±0.003 25.675±0.000 0.108±0.001
NBEATS 0.032±0.002 0.072±0.000 0.435±0.080 0.453±0.000 0.655±0.000 20.089±20.404 0.116±0.000
OFA 0.112±0.003 0.286±0.040 0.491±0.034 0.285±0.046 3.786±0.234 38.119±1.536 0.446±0.009
INFORMER 0.064±0.020 0.081±0.002 0.351±0.000 0.424±0.011 0.990±0.140 4.765±0.336 0.157±0.000
AUTOFORMER 0.090±0.021 0.102±0.005 0.451±0.018 0.383±0.003 2.107±0.425 40.456±12.354 0.185±0.010
ETSFORMER 0.105±0.011 0.191±0.026 0.692±0.071 0.460±0.009 1.271±0.086 58.708±17.080 0.188±0.008
LAGLLAMA 0.087±0.018 0.095±0.013 0.323±0.004 0.381±0.003 1.536±0.237 4.961±1.912 0.119±0.001

Table 7: CRPS of Lag-Llama on the 7/20 datasets in the pretraining corpus, compared to supervised baselines trained solely on the
respective datasets. Lower is better. A mean or standard deviation of 0.0000 signifies that the first non-zero digit is beyond 3 decimal
places.

MODEL
DATASET

UBER WINDFARMS ETT H1 ETT H2 ETT M1 AIRQUALITYUCI BEIJINGMULTISITE

AUTOARIMA 0.322±0.000 0.084±0.000 0.120±0.000 0.095±0.000 NAN±NAN 0.206±0.000 0.359±0.000
AUTOETS 0.461±0.000 0.096±0.000 0.117±0.000 0.105±0.000 0.073±0.000 0.220±0.000 0.472±0.000
CROSTONSBA 0.427±0.000 0.130±0.000 0.123±0.000 0.112±0.000 0.094±0.000 0.237±0.000 0.400±0.000
DEEPAR 0.170±0.003 0.070±0.000 0.105±0.002 0.082±0.010 0.074±0.007 0.195±0.006 0.282±0.032
DYNAMICOPTIMIZE 0.433±0.000 0.060±0.000 0.117±0.000 0.085±0.000 0.070±0.000 0.216±0.000 0.394±0.000
NPTS 0.191±0.000 0.208±0.000 0.268±0.001 0.216±0.001 0.162±0.000 0.130±0.001 0.414±0.006
PATCHTST 0.219±0.007 0.057±0.000 0.099±0.001 0.067±0.001 0.063±0.001 0.189±0.003 0.304±0.016
TEMPORALFUSIONT 0.197±0.012 0.055±0.000 0.082±0.006 0.049±0.001 0.058±0.000 0.227±0.026 0.410±0.019
NBEATS 0.352±0.000 0.117±0.000 0.013±0.001 0.010±0.001 0.009±0.000 0.156±0.004 0.340±0.016
OFA 0.424±0.006 0.190±0.010 0.172±0.002 0.148±0.002 0.146±0.006 0.201±0.016 0.362±0.040
INFORMER 0.196±0.003 0.099±0.014 0.174±0.003 0.112±0.014 0.098±0.008 0.191±0.024 0.241±0.016
AUTOFORMER 0.205±0.007 0.246±0.038 0.155±0.010 0.119±0.005 0.119±0.008 0.172±0.012 0.238±0.012
ETSFORMER 0.313±0.011 0.588±0.331 0.142±0.004 0.102±0.005 0.108±0.003 0.197±0.021 0.481±0.084
LAGLLAMA 0.168±0.002 0.145±0.009 0.104±0.001 0.073±0.005 0.068±0.001 0.138±0.006 0.340±0.055

Table 8: CRPS of Lag-Llama on the 6/20 datasets in the pretraining corpus, compared to supervised baselines trained solely on the
respective datasets. Lower is better. A mean or standard deviation of 0.0000 signifies that the first non-zero digit is beyond 4 decimal
places.

MODEL
DATASET

CPU LIMIT CPU USAGE FUNCTION DELAY INSTANCES MEMORY LIMIT MEMORY USAGE

AUTOARIMA 0.2245±0.0000 0.0814±0.0000 0.0936±0.0000 0.0121±0.0000 0.2024±0.0000 0.0326±0.0000
AUTOETS 0.0632±0.0000 0.0806±0.0000 NAN±NAN 0.0128±0.0000 0.0632±0.0000 0.0664±0.0000
CROSTONSBA 0.0278±0.0000 0.0826±0.0000 0.0756±0.0000 0.0318±0.0000 0.0278±0.0000 0.0346±0.0000
DEEPAR 0.0004±0.0001 0.1034±0.0016 0.1097±0.0039 0.0179±0.0054 0.0004±0.0000 0.0147±0.0016
DYNAMICOPTIMIZE 0.0012±0.0000 0.0813±0.0000 0.0381±0.0000 0.0140±0.0000 0.0010±0.0000 0.0667±0.0000
NPTS 0.0001±0.0001 0.1010±0.0004 0.0808±0.0008 0.0158±0.0002 0.0001±0.0001 0.0164±0.0002
PATCHTST 0.0023±0.0005 0.0805±0.0026 0.0571±0.0000 0.0104±0.0021 0.0042±0.0012 0.0172±0.0042
TEMPORALFUSIONT 0.0001±0.0001 0.0830±0.0062 0.0552±0.0030 0.0057±0.0010 0.0000±0.0000 0.0113±0.0013
NBEATS 0.0001±0.0000 0.0972±0.0018 0.0502±0.0030 0.0086±0.0012 0.0000±0.0000 0.0121±0.0009
OFA 0.0004±0.0003 0.1209±0.0082 0.1249±0.0170 0.0235±0.0019 0.0000±0.0000 0.0137±0.0012
INFORMER 0.0001±0.0000 0.0986±0.0040 0.0843±0.0143 0.0164±0.0000 0.0000±0.0000 0.0110±0.0004
AUTOFORMER 0.0392±0.0040 0.1040±0.0031 0.1652±0.0328 0.1311±0.0600 0.1489±0.0334 0.1301±0.1235
ETSFORMER 0.0021±0.0015 0.1295±0.0061 0.2066±0.0774 0.5406±0.4268 1.2181±1.2744 0.0605±0.0120
LAGLLAMA 0.0001±0.0000 0.0897±0.0013 0.0590±0.0000 0.0062±0.0010 0.0000±0.0000 0.0127±0.0007
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Figure 13: A neural scaling law fit to the validation loss (negative log-likelihood) of our foundation model, averaged across 3 seeds. ”fit”
represents points from the validation curve used for constructing the scaling law. ”unseen” represents points of the validation curve that
are predicted with the constructed scaling. We use a 60/20/20 train/val/test split to fit our scaling law.
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Table 9: Average Rank Across all Pre-Training Datasets. Lower
is better.

MODEL AVERAGE RANK

ETSFORMER 10.900
AUTOETS 10.200
CROSTONSBA 10.000
OFA 9.850
AUTOFORMER 9.550
NPTS 8.350
AUTOARIMA 8.333
DYNAMICOPTIMIZE 8.300
INFORMER 6.025
DEEPAR 5.125
PATCHTST 4.700
LAGLLAMA 4.625
NBEATS 4.600
TEMPORALFUSIONT 3.875
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